Zero-Sum Repeated Games with Stage Duration and Public Signals Ivan Novikov, Université Paris Dauphine-PSL

1. Repeated games with public signals

A zero-sum repeated game with symmetric information, in which the signal depends only on the current state is a 7-tuple $(A, \Omega, f, I, J, g, q)$, where:

• A is the finite set of signals;

• Ω is the finite set of states;

- $f: \Omega \to A$ is a deterministic signaling function on Ω ;
- I (resp. J) is the finite set of actions of player 1 (resp. player 2);
- $g: I \times J \times \Omega \rightarrow \mathbb{R}$ is the payoff function of player 1;
- $q: I \times J \to \{ \text{matrices } |\Omega| \times |\Omega| \text{ such that}$ $q_{\omega_1 \omega_2}(i, j) \ge 0 \text{ for } \omega_1 \neq \omega_2, \ q_{\omega \omega}(i, j) \in$ $[-1, 0], \text{ and } \sum_{\omega_2 \in \Omega} q_{\omega_1 \omega_2}(i, j) = 0 \}$ is the kernel function.

The game is played in discrete time. An

2. Examples of signalling on the states

(a) Perfect observation of the state, i.e. there are 6 signals $\alpha_1, \ldots, \alpha_6$; and $f(w_i) := \alpha_i$.

 (w_1)

 $\alpha_2(w_2)$

 α_3 (w_3)

(b) State-blind case. There is only one signal α , and $f(w_i) := \alpha$.

 (w_4)

 (w_5)

 (w_6)

 (w_2)

(c) Intermediate case. $f(w_1) = f(w_2) = f(w_3) = \alpha,$ $f(w_4) = f(w_5) = \beta, f(w_6) = \gamma$

 (w_6)

3. Stage duration

 $(w_4) \alpha_4$

 $(w_5) \alpha_5$

 $(w_6) \alpha_6$

Fix a repeated game $G = (A, \Omega, f, I, J, g, q)$. *Game with stage duration h* is the repeated game $G_h = (A, \Omega, f, I, J, g^h, q^h)$, where $g^h = hg$ and $q^h = hq$, i.e. the kernel and the payoff function are proportional to stage duration *h*. We may think that the players act at times $0, h, 2h, \ldots$, and not at times $0, 1, 2, \ldots$, as in usual repeated game: **O h 2h 3h 4h 5h**

6. Second result

Consider a game from [4], similar to a game from [5]. It has 6 states, +, ++, $+^*, -, --, -^*$. The states $+^*$ and $-^*$ are absorbing. Payoff and signalling struc-

- initial state $\omega_1 \in \Omega$ is chosen according to given probability law p_0 . At stage $n \in \mathbb{N}^*$: 1. The current state is $\omega_n \in \Omega$. Players do not observe it, but they observe the signal $\alpha_n = f(\omega_n)$;
- 2. Players choose their mixed actions, $x_n \in \Delta(I)$ and $y_n \in \Delta(J)$;
- 3. An action $i_n \in I$ (resp. $j_n \in J$) is chosen according to x_n (resp. y_n). Both actions are observed by both players;
- 4. The payoff is $g_n = g(i_n, j_n, \omega_n)$. The new state is ω_{n+1} with probability $\int q_{\omega_n \omega_{n+1}}(i_n, j_n)$, if $\omega_{n+1} \neq \omega_n$;

 $\begin{cases} 1 + q_{\omega_n \omega_{n+1}}(i_n, j_n) & \text{, if } \omega_{n+1} = \omega_n. \\ \text{A strategy consists of choosing } x_n \text{ and } y_n \\ \text{at each stage (taking into account past actions and received signals).} \end{cases}$

If A is a singleton, then the game is a state-blind repeated game. If $A = \Omega$ and f = Id, then the game is a stochastic game, i.e. players can observe the state.

References

[1] A. Neyman. Stochastic games with shortstage duration. Dynamic Games and Applications, 3(2):236–278, 2013.

For each $\lambda > 0$ and small h, the λ discounted payoff of the game G_h is (depending on the strategy profile (σ, τ) , and initial probability on the states p) $G^p_{\sigma,\tau} = E^p_{\sigma,\tau} \left(\lambda \sum_{i=1}^{\infty} (1 - \lambda h)^{i-1} g^h_i \right).$ The value $v_{h,\lambda} : \Delta(\Omega) \to \mathbb{R}$ is defined by $v_{h,\lambda}(p) = \sup_{\sigma} \inf_{\tau} G^p_{\sigma,\tau} = \inf_{\tau} \sup_{\sigma} G^p_{\sigma,\tau}.$ Stochastic games with stage duration were first introduced in [1]. **Proposition 1** |1,2|: If players can observe the states (i.e. $f(\omega_i) = \alpha_i$), then: 1. $\lim_{h\to 0} v_{h,\lambda} = v_{1,\frac{\lambda}{1+\lambda}};$ 2. $\lim_{h\to 0} v_{h,\lambda}$ is a unique solution of $\lambda v(\omega) = \operatorname{Val}_{I \times J} \left| g(i, j, \omega) + \sum_{\omega' \in \Omega} q_{\omega \omega'}(i, j) \cdot v(\omega') \right|;$ 3. The limits $\lim_{\lambda \to 0} \lim_{h \to 0} v_{h,\lambda}$ and $\lim_{\lambda \to 0} v_{1,\lambda}$ exist or do not exist simultaneously. In the case of existence, they are equal to each other.

4. An example

Consider a 1-player state-blind game with 2 actions, C and Q.

$p_3(+^*)$ $(-^*) p_6$
Signal PLUSsignal MINUSPayoff +1Payoff -1
The actions of player 1 are T, M, B , and
the actions of player 2 are L, M, R, Q . The transition probability matrices:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Figure 2: State – Figure 3: State +
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Fig. 4: State
$ \begin{array}{ c c c c c c c c } \hline L & M & R & Q \\ \hline T & \frac{1}{3}\{++\} + \frac{2}{3}\{+\} & ++ & ++ & +* \\ \hline M & ++ & \frac{1}{3}\{++\} + \frac{2}{3}\{+\} & ++ & +* \\ \hline B & ++ & ++ & \frac{1}{3}\{++\} + \frac{2}{3}\{+\} & +* \\ \hline \end{array} $
Fig. 5: State ++
Theorem 2 : Denote $p = (p_1, p_2, p_3, p_4, p_4)$
p_5, p_6). For the above game,
1. $\lim_{\lambda \to 0} v_{1,\lambda}(p)$ does not exist [4,5]; 2. Uniform limit $\lim_{\lambda \to 0} \lim_{h \to 0} v_{h,\lambda}(p)$ exists, and it equals
$\begin{cases} \frac{7}{11}p_1 - p_2 - p_3 + \frac{5}{11}p_4 - p_5 + p_6 & \text{, if } \frac{p_2}{p_1 + p_2} \le \frac{2}{3} \text{ and } \frac{p_5}{p_4 + p_5} \le \frac{7}{10}p_1 - p_2 - p_2 + \frac{7}{10}p_4 + \frac{7}{10}p_5 + p_6 & \text{if } \frac{p_2}{p_2} \le \frac{2}{3} \text{ and } \frac{p_5}{p_4 + p_5} \le \frac{7}{10}p_4 + \frac{7}{10}p_5 + p_6 & \text{if } \frac{p_2}{p_2} \le \frac{2}{3} \text{ and } \frac{p_5}{p_4 + p_5} \le \frac{7}{10}p_4 + \frac{7}{10}p_5 + p_6 & \text{if } \frac{p_2}{p_2} \le \frac{2}{10}p_4 + \frac{7}{10}p_5 + p_6 & \text{if } \frac{p_2}{p_4 + p_5} \le \frac{2}{10}p_4 + \frac{7}{10}p_5 + p_6 & \text{if } \frac{p_2}{p_4 + p_5} \le \frac{2}{10}p_4 + \frac{7}{10}p_5 + \frac{7}{10}p_5 + \frac{7}{10}p_5 + \frac{7}{10}p_5 + \frac{7}{10}p_5 + \frac{7}{10}p_5 & \text{if } \frac{p_2}{p_4 + p_5} \le \frac{2}{10}p_4 + \frac{7}{10}p_5 + \frac{7}{10}p_5 + \frac{7}{10}p_5 + \frac{7}{10}p_5 & \text{if } \frac{p_2}{p_4 + p_5} \le \frac{2}{10}p_4 + \frac{7}{10}p_5 + \frac{7}{10}p_5 + \frac{7}{10}p_5 + \frac{7}{10}p_5 & \text{if } \frac{p_2}{p_4 + p_5} \le \frac{2}{10}p_5 & \text{if } \frac{p_5}{p_4 + p_5} \le \frac{2}{10}p_5 & \text{if } \frac{p_5}{p_5} & \text{if } $

 $\begin{cases} \frac{7}{11}p_1 - p_2 - p_3 + \frac{7}{11}p_4 + \frac{7}{11}p_5 + p_6 & \text{, if } \frac{p_2}{p_1 + p_2} \leq \frac{5}{3} \text{ and } \frac{10}{p_4 + p_5} > \frac{5}{4}; \\ -\frac{5}{11}p_1 - \frac{5}{11}p_2 - p_3 + \frac{5}{11}p_4 - p_5 + p_6 & \text{, if } \frac{p_2}{p_1 + p_2} > \frac{2}{3} \text{ and } \frac{p_5}{p_4 + p_5} \leq \frac{3}{4}; \\ -\frac{5}{11}p_1 - \frac{5}{11}p_2 - p_3 + \frac{7}{11}p_4 + \frac{7}{11}p_5 + p_6 & \text{, if } \frac{p_2}{p_1 + p_2} > \frac{2}{3} \text{ and } \frac{p_5}{p_4 + p_5} \leq \frac{3}{4}; \end{cases}$

7. Final remarks

1. In case when players observe the state, the value

[2] S. Sorin and G. Vigeral. Operator approach to values of stochastic games with varying stage duration. International Journal of Game Theory, 45(1):389–410, 2016.

[3] S. Sorin. Limit value of dynamic zero-sum games with vanishing stage duration. Mathematics of Operations Research, 43(1):51-63, 2017. [4] J. Renault and B. Ziliotto. Hidden stochastic games and limit equilibrium payoffs. Games and Economic Behavior, 124:122–139, 2020. [5] B. Ziliotto. Zero-sum repeated games: Counterexamples to the existence of the asymptotic value and the conjecture maxmin = lim v_n . The Annals of Probability, 44(2):1107 - 1133, 2016. State S_3 (-1^*) $(+1^*)$ State S_4 Initial probability p_3 (-1^*) $(+1^*)$ Initial probability p_4 For this game, we have $\lim_{h\to 0} v_{h,\lambda}(p_1, p_2, p_3, p_4) = p_4 - p_3 + \frac{1}{1+\lambda} \max\{0, p_2 - p_1\};$ $v_{1,\lambda}(p_1, p_2, p_3, p_4) = p_4 - p_3 + p_2(1-\lambda) + p_1(1-\lambda)^2.$ Note all of the assertions of Proposition 1 do not hold here.

5. First result If X is finite, $\zeta \in \Delta(X)$, and μ is a $|X| \times |X|$ matrix, denote $\zeta * \mu(x) := \sum_{x' \in X} \zeta(x') \cdot \mu_{x'x}$. **Theorem 1**: If $(A, \Omega, f, I, J, g, q)$ is a state-blind repeated game, then uniform limit $\lim_{h\to 0} v_{h,\lambda}(p)$ exists and is a unique viscosity solution of $\lambda v(p) = \operatorname{val}_{I \times J}[g(i, j, p) + \langle (p * q(i, j))(\cdot), \nabla v(p) \rangle].$

of a continuous-time zero-sum Markov game (CTZSMG) coincides with the value of analogous stochastic game when its stage duration tends to 0. In the state-blind case, the same thing holds, if instead of a CTZSMG we consider its discretization, in which players can act only at times $0, h, 2h, \ldots$, where h tends to 0. This implies that the general case with public signals may also be connected with CTZSMGs. The discretization of CTZSMGs is studied in [3]. 2. Instead of assuming that each stage has duration h, one may assume that n-th stage duration is h_n , so that *n*-th stage payoff and kernel are $h_n g$ and $h_n q$ respectively. We are interested in the behavior of the value when $\sup\{h_n\} \to 0$. One can prove that Theorems 1 and 2 still hold in this more general framework.

₽T_EX TikZ**poster**